Jeehwan Kim

Jeehwan Kim joined the Mechanical Engineering faculty in September 2015. He received his BS from Hongik University, his MS from Seoul National University, and his PhD from UCLA in 2008, all of them in materials science. Since 2008, Kim has been a research staff member at IBM’s T.J. Watson Research Center, conducting research in photovoltaics, 2D materials, graphene, and advanced CMOS devices. He has been named a master inventor at IBM for his prolific creativity, with over 100 patent filings in five years. Kim’s breakthrough contributions including: demonstration of peeling of large-area single-crystal graphene grown from a SiC substrate, enabling reuse of the expensive substrate; successful growth of GaN on grapheme, with 25% lattice mismatch and demonstrating that GaN films grown from the process function well as LEDs, pointing to a new principle for growing common semiconductors for flexible electronics; and achieving high efficiency in Si/polymer tandem solar cells and 3D solar cells.

Michael Birnbaum will join the Biological Engineering faculty as an assistant professor and become a core member of the Koch Institute for Integrative Cancer Research in January 2016. He received an AB in chemical and physical biology from Harvard and a PhD in immunology from Stanford, where he received the Gerald Lieberman Award given to the school’s most outstanding medical school PhD graduate. Birnbaum’s research combines protein engineering, structural biology, and bioinformatics to understand and manipulate immune-cell responses to antigenic stimuli in cancer and infectious disease. He will teach Course 20’s required sophomore biological thermodynamics subject and assist in creating a new immunoengineering elective.

Zachary P. Smith will join the Department of Chemical Engineering as an assistant professor in January, 2017. Smith earned his bachelor’s degree in chemical engineering from Pennsylvania State’s Schreyer Honors College, and completed his PhD in chemical engineering at the University of Texas at Austin, where he worked under the guidance of Benny Freeman and Don Paul. While at UT Austin, Smith developed structure/property relationships for gas diffusion and sorption in polymer membranes. His postdoctoral training with Jeffrey Long at the UC Berkeley examined the design of coordination solid (i.e. metal-organic frameworks) for selective adsorption based separations. His research focuses on the molecular-level design, synthesis, and characterization of polymers and inorganic materials for applications in membrane and adsorption-based separations. These efforts are promising for gas-phase separations critical to the energy industry and to the environment, such as the purification of olefins and the capture of CO2 from flue stacks at coal-fired power plants. Smith has co-authored over 20 peer-reviewed papers and been recognized with several awards, including the DoE Office of Science Graduate Fellowship. He was also selected as a U.S. delegate to the Lindau Nobel Laureate meeting on Chemistry in 2013.


Zachary Hartwig will join the Department of Nuclear Science and Engineering in January 2017 as an assistant professor. He will also receive a co-appointment at the MIT Plasma Science and Fusion Center (PSFC). He received his PhD from MIT in 2014 for the development of a novel accelerator-based technique that advanced the ability to study the dynamic interaction of confined plasmas and the surrounding solid materials — known as plasma-material interactions — in fusion devices. Since 2014, he has been a postdoc at the PSFC, continuing to develop diagnostic techniques for plasma-material interactions, leading the establishment of a new laboratory for accelerator-based nuclear science, and leading the design of high-magnetic field net energy gain fusion devices that leverage new superconducting magnet technology. Hartwig’s research will focus on the development and application of particle accelerators, radiation detectors, and computational radiation transport simulations to magnetic fusion energy, nuclear security, and radiation damage in nuclear materials. He presently holds a U.S. Department of Energy ORISE Fellowship in the fusion energy sciences and is the recipient of the Del Favero doctoral thesis prize.

Virginia Vassilevska Williams will join the department of Electrical Engineering and Computer Science as an associate professor in January 2017, pending the approval of her case by Academic Council. She received a BS in mathematics and engineering and applied science from Caltech and a PhD in computer science from Carnegie Mellon. She was a postdoctoral fellow at the Institute for Advanced Study (Princeton), UC Berkeley, and Stanford. Prior to joining MIT, she spent three and a half years as an assistant professor at Stanford. Her research interests are broadly in theoretical computer science, focusing on the design and analysis of algorithms and fine-grained complexity. Her work on matrix multiplication algorithms was covered by the press and is the most cited paper in algorithms and complexity in the last five years.

Tal Cohen will join the Department of Civil and Environmental Engineering as an assistant professor in November 2016. After she received her PhD in aerospace engineering in 2013 from Technion University in Israel, she came to MIT for a two-year postdoctoral position in the Department of Mechanical Engineering. She is currently a postdoc at the School of Engineering and Applied Sciences at Harvard University. Cohen works in mechanics, especially the mechanics of structures subjected to extreme loading conditions and shock wave propagation. Her work on the mechanics of stretchable materials that can undergo extreme deformations up to loss of stability, and on the mechanics of growth in both biology and engineering, exploits analogies with related fields. By employing complex nonlinear material models, Cohen’s research group will focus on deriving theoretical models that can significantly affect our understanding of observed phenomena but are still simple enough to be applied in design or characterization of materials.


Stefanie Mueller will join the Department of Electrical Engineering and Computer Science as an assistant professor in January 2017. She received her PhD in human-computer interaction (HCI) from the Hasso Plattner Institute in 2016, where she also received an MS in IT-systems engineering. In her research, Mueller develops novel interactive hardware and software systems that advance personal fabrication technologies. Her work has been published at the most selective HCI venues — Association for Computing Machinery (ACM), the Conference for Human Factors in Computing Systems (CHI), and User Interface Software and Technology (UIST) — and received a best paper award and two best-paper nominees. Mueller is an associate chair of the program committees at ACM, CHI, and UIST, and is a general co-chair for the ACM SIGGRAPH Symposium on Computational Fabrication that will take place at MIT in June 2017. She has been an invited speaker at MIT, Stanford, the University of California at Berkeley, Harvard, Carnegie Mellon University, Cornell University, Microsoft Research, Disney Research, Adobe Research, and others. In addition, her work has been covered widely in New Scientist, BBC, The Atlantic, and The Guardian. Mueller will head the HCI engineering group at MIT’s Computer Science and Artificial Intelligence Laboratory, which works at the intersection of human-computer interaction, computer graphics, computer vision, and robotics.

Ryan Williams will join MIT as an associate professor (with tenure) in the Department of Electrical Engineering and Computer Science in January 2017, pending the approval of his tenure case by the Executive Committee. He received an BA in computer science and mathematics from Cornell, and a PhD in computer science from Carnegie Mellon. Following postdoctoral appointments at the Institute for Advanced Study (Princeton) and IBM Almaden, he was an assistant professor of computer science at Stanford for five years. Williams’s research interests are in the theoretical design and analysis of efficient algorithms and in computational complexity theory, focusing mainly on new connections (and consequences) forged between algorithm design and logical circuit complexity. Along with some best paper awards, Williams has received a Sloan Fellowship, an NSF CAREER Award, a Microsoft Research Faculty Fellowship, and was an invited speaker at the 2014 International Congress of Mathematicians.

Max Shulaker joined the Department of Electrical Engineering and Computer Science as an assistant professor in July. He received his BS, master’s, and PhD in electrical engineering at Stanford, where he was a Fannie and John Hertz Fellow and a Stanford Graduate Fellow. Shulaker’s research focuses on the broad area of nanosystems. His Novel Electronic Systems Group aims to understand and optimize multidisciplinary interactions across the entire computing stack — from low-level synthesis of nanomaterials, to fabrication processes and circuit design for emerging nanotechnologies, up to new architectures — to enable the next generation of high performance and energy-efficient computing systems.

Matteo Bucci will join the Department of Nuclear Science and Engineering (NSE) faculty as an assistant professor in the fall of 2016. He received his PhD in nuclear engineering from the University of Pisa in Italy in 2009. A research scientist in NSE since 2015, Bucci was previously at Commissariat à l’énergie atomique in France, where he led several research projects in experimental and computational thermal-hydraulics for light water reactors and sodium fast reactors. His research will focus in two main areas: heat transfer nanoengineering innovations to improve the safety and economic competitiveness of nuclear reactors, and advanced diagnostics and intelligent systems to improve situational awareness, fault detection and diagnostics, and anticipated failures in nuclear power plants. Bucci is an active member of the Consortium for Advanced Nuclear Energy Systems, one of the MIT’s eight Low-Carbon Energy Centers.



content Link link